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Field theory simulation of Abelian-Higgs cosmic string cusps

Ken D. Olum* and J. J. Blanco-Pillado†

Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155
~Received 14 December 1998; published 27 May 1999!

We perform a lattice field theory simulation of cusps in Abelian-Higgs cosmic strings. The results are in
accord with the theory that the portion of the strings which overlaps near the cusp is released as radiation. The
radius of the string cores which must touch to produce the evaporation is approximatelyr 51 in natural units.
In general, the modifications to the string shape due to the cusp may produce many cusps later in the evolution
of a string loop, but these later cusps will be much smaller in magnitude and more closely resemble kinks.
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I. INTRODUCTION

Cosmic strings arise naturally in spontaneous symm
breaking phase transitions in which the vacuum manif
after the transition is not simply connected@1#. ~For reviews
see@2,3#.! A simple field theory which possesses such d
fects is the Abelian-Higgs model,

L5Dmf̄Dmf2
1

4
FmnFmn2

l

4
~ ufu22h2!2 ~1!

with

Dmf5~]m2 ieAm!f. ~2!

We can choose units such thath51 ande51. We will also
work in the ‘‘critical coupling’’ regime in which b
5l/(2e2)51 so that in our unitsl52.

The fields of an infinitely long, static, straight string a
given by @4#

f~r !5eiu f ~r !, ~3!

Au52
a~r !

r
, ~4!

where f (0)5a(0)50 and f (r )→1 anda(r )→1 asr→`.
The exact form off anda must be found numerically.

If the string core radius is small as compared to the rad
of curvature of a string, the action can be approximated
the Nambu action,

S52mE d2zA2detg, ~5!

wherem is the energy per unit string length,g is the metric
on the world sheet of the string andz1,z2 denote the world
sheet coordinates. We can choose parameterss andt in such
a way that the position of the string is given at any timet by
a functionx(s,t) that satisfies
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ux8~s,t !u21uẋ~s,t !u251, ~6a!

x8~s,t !• ẋ~s,t !50. ~6b!

The equation of motion is

x9~s,t !5 ẍ~s,t !, ~7!

where x8 denotes differentiation with respect tos and ẋ
denotes differentiation with respect tot. Equation~6b! means
that the velocity of the string is always in the plane perpe
dicular to the string, while Eq.~6a! parametrizes the string
with constant energy per units. The general solution of Eqs
~6! and ~7! is

x~s,t !5
1

2
@a~s2t !1b~s1t !#, ~8!

wherea andb are arbitrary functions that satisfyua8u5ub8u
51. The functionsa and b describe waves traveling in th
positive and negatives directions, respectively.

As long as the string remains smooth, its entire evolut
is given by Eq.~8! and the state of the string at all times
fixed by the functionsa8 andb8. The values of these func
tions are unit vectors, so we can consider them to trace
paths on the surface of the unit sphere. For a string loop
quantities will be periodic ins, so the paths on the uni
sphere will be closed. Furthermore, sincea andb are them-
selves periodic,

E dsa8~s!5E dsb8~s!50, ~9!

which is to say that the centers of gravity of the paths ofa8
andb8 are at the center of the sphere. Thus, for examplea8
or b8 could not lie entirely in a single hemisphere, and,
general, we would expect that there would be one or m
crossings between the paths ofa8 andb8. By the same argu-
ment, there will be places wherea8 and2b8 have the same
value, that is to say values ofsa and sb at which a8(sa)
1b8(sb)50. As a result, at timet5(sb2sa)/2 and posi-
tion s5(sb1sa)/2 we will find x8(s,t)5@b8(s1t)
1a8(s2t)#/250 and uẋ(s,t)u5ub8(s1t)2a8(s2t)u/2
©1999 The American Physical Society03-1
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KEN D. OLUM AND J. J. BLANCO-PILLADO PHYSICAL REVIEW D60 023503
51. Such a point is a cusp. The string there is momenta
moving ~in the Nambu-Goto approximation! at the speed of
light.

As the string evolves toward the time of the cusp, t
Nambu-Goto approximation will break down. Sincex850 at
the cusp, the segments of string point in the same direc
leaving the cusp, and so there is the potential for over
between the segments on the two sides. When the s
cores overlap, the topological constraints which stabilize
string no longer operate, and the energy in the string can
released as radiation. This radiation is of cosmological in
est because it could potentially lead to observable cos
rays, and because it affects the rate at which oscillating lo
lose their energy@5–10#.

At some point when the cusp-related evolution is co
plete, the string will once again be smooth and nonoverl
ping, and will resume Nambu-Goto evolution with new fun
tionsa8 andb8. One can consider the evolution at the time
the cusp to be a scattering process which takes an initial s
of a8 andb8 and produces a final state with newa8 andb8
and a certain amount of outgoing radiation.

To determine the amount of radiation emitted and the
sulting configuration of the string, we have written a latti
field theory simulation of the Abelian-Higgs field theory.

II. THEORETICAL EXPECTATIONS

The usual expectation is that the string can participate
cusp evaporation when the ‘‘cores’’ of the strings on the t
sides of the cusp are overlapping. A parameterr gives the
‘‘core radius,’’ i.e., the point at which overlap dynamics c
begin, as shown in Fig. 1. We expect this radius to be on
order ofh2151 in our units.

In @10# we showed that a generic cusp can be analyze
a frame in whichx0- is parallel toẋ0, where the subscript 0
denotes quantities evaluated at the cusp. Throughout this
per we will work in such a reference frame.

In Sec. III of @10# we calculated the amount of overla
between the two branches of a string at a cusp. The re
was that the two segments of the string overlap from the c
out to a distancesc given by

FIG. 1. Schematic shape for a cusp in a cosmic string. T
shaded region corresponds to the core of the string. To the le
the vertical line, the cores overlap, and the energy could be rele
as radiation. The string appears thinner near the cusp becau
Lorentz contraction.
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sc5S 3rAux09u
21uẋ08u

2

uẋ08•x09u
2 2

1

ux09u
2D 1/2

1O~r !. ~10!

We expect an amount of string of total length 2sc to be
replaced by a short bridging string of length 2r or less, so
that the energy released in radiation will be approximat
2msc .

In a string of cosmological size,sc would be very much
larger thanr, and the approximation in Eq.~10! would be
very accurate. However, we cannot simulate a string w
such a large ratio of length scales.~Our largest simulation
hassc /r'17.! To improve the accuracy of our prediction
we proceed as follows. We assume that the string
Nambu-Goto evolution until the time of the cusp~which is
confirmed by simulation, see below!, and compute the posi
tions s1 ands2 on the two sides of the cusp at which th
~Lorentz contracted! string cores just touch. It is possible th
s1 ands2 are not uniquely defined by this condition, sinc
perhapss1 could be moved away from the cusp whiles2

was moved toward the cusp, to produce different points
overlap. In this case, we take the points which lead to
largest emission of energy. We then assume that the st
segment froms2 to s1 will be replaced by a bridging string
at rest betweenx(s2) andx(s1), to arrive at an estimate o
the energy release. Since we do not know the radiusr at
which overlap dynamics become possible, we can cons
the simulation to provide us with a value for this radius.

How should the paths ofa8 and b8 be affected by the
evaporation of the cusp? Near the cusp,a8(s);a0852 ẋ0

andb8(s);b085 ẋ0. Outside the region of overlap, they wi
retain these values, but inside that region we will have
bridging string. The bridging string will point in the directio
of x0- because that is the direction in which the two arms
the cusp spread apart. Since the motion of the string nea
cusp is approximatelyẋ0, which is parallel tox0- , the bridg-
ing string will be created approximately stationary. Thus
the bridge,a8(s)5b8(s)}x0- , with a positive constant of
proportionality. There are thus two cases, depending
whetherx0- is parallel or antiparallel toẋ0. If they are paral-
lel, then b8(s) on the bridge will have roughly the sam

e
of
ed
of

FIG. 2. Schematic of the evolution of the functionsa8 ~solid
arrows! andb8 ~dashed arrows! before~dashed line! and after~solid
line! the cusp evaporation process.
3-2



in
ue

w
f
u

nc
4

ch
th

th

a

g

e

e

he

n-

d
tted

s
re.

FIELD THEORY SIMULATION OF ABELIAN-HIGGS . . . PHYSICAL REVIEW D60 023503
value that it has on nearby unaffected portions of the str
but a8(s) on the bridge will have nearly the opposite val
as it does nearby, as shown in Fig. 2. Thus in this case
expect the path ofa8(s) to be broken near the point o
crossing and reconnected around the opposite side of the
sphere. In the case thatx0- and ẋ0 are antiparallel, we will
have the reverse behavior. The path ofa8(s) will be pretty
much unaffected, whileb8(s) will be broken and recon-
nected. This effect of the cusp on the evolution of the fu
tionsa8 andb8 on the unit sphere is shown in Figs. 3 and

III. SIMULATION

A. Lattice action

To put Eq. ~1! on a lattice, we have used an approa
somewhat different from those that have been used in
past for topological defects@11–13#, but more like that used
in lattice QCD@14#. We put the system on a lattice in bo
space and time, with the scalar fieldf stored on the vertices
of the lattice, the vector fieldAm on the links, and the field
strengthFmn on the faces. The action can be specified
follows.

Let s denote a lattice site,l a directed link from sitel 2 to
site l 1 , and f a directed face made of linksf 1 , f 2 , f 3, and
f 4. Let (s denote summation over all sites,( l summation
over all links, counting each link once, and( f summation
over all faces, counting each face once. Let( l u l 15s denote

summation over all links that end in sites and( f u f 15 l denote
summation over all faces that border linkl. Then the lattice
action is

S5Dx3DtS (
s
Ls1(

l
Ll1(

f
Lf D , ~11!

where

Ls52V~fs!52
1

4
l~ ufsu22h2!2, ~12!

Ll5glDlf̄Dlf, ~13!

Lf52
1

2
gfF f

2 . ~14!

HereDx andDt are the spatial and temporal lattice spacin
gl is the metric,gl511 if l is timelike, andgl521 if l is
spacelike; andgf5gf 1

gf 2
, i.e., gf511 if all sides of f are

spacelike, andgf521 if f has a timelike side. The discret
covariant derivative is given by

Dlf5D l~f l 1
2eiD l eAlf l 2

!, ~15a!

Dlf̄5D l~f̄ l 1
2e2 iD l eAlf̄ l 2

!, ~15b!

whereD l denotesDx if l is spacelike orDt if l is timelike.
The field strength is given by
02350
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F f5D f 1

21D f 2

21~D f 1
Af 1

1D f 2
Af 2

1D f 3
Af 3

1D f 4
Af 4

!.

~16!

The action of Eq.~11! is invariant under a discrete gaug
transformation given by a real numberLs at each lattice site,

fs→eiLsfs ~17a!

Al→Al1D l
21~L l 1

2L l 2
!. ~17b!

We will work in temporal gauge,Al50 for all timelike links
l, which greatly simplifies the calculation.

The equations of motion resulting from Eq.~11! are

(
l u l 15s

glD l
22~f̄ l 2

e2 iD l eAl2f̄s!1
]V

]fs
50, ~18a!

(
f u f 15 l

D f 2

21gfF f5 j l , ~18b!

where the link current is

j l5 ieD l
21gl~e2 ieD lAlf̄ l 2

f l 1
2eieD lAlf̄ l 1

f l 2
!. ~19!

The stability of our finite difference scheme requires t
Courant condition,Dt/Dx,1/A3'0.58@15# for three spatial
dimensions. In fact, ratios slightly less than this are still u

FIG. 3. The paths ofa8 and 2b8 before the cusp. The dashe
segments are the parts that will be affected by the cusp. The do
curves are the paths around the back of the sphere.

FIG. 4. The paths ofa8 and2b8 after the cusp. One of the path
has been broken and reconnected around the back of the sphe
3-3
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KEN D. OLUM AND J. J. BLANCO-PILLADO PHYSICAL REVIEW D60 023503
stable in our code, presumably due to numerical error. To
safe, we have usedDt/Dx50.5. To verify that this condition
is sufficient, we have checked that our simulations conse
energy over long periods of time.

We have used reflecting boundary conditions~fixed field
values! on the top and the bottom faces of our lattice bo
and first order absorbing boundary conditions@16,17# on the
lateral faces. The absorbing conditions prevent the radia
emitted at the cusp from reflecting off the walls and intera
ing with the later evolution of the string.

B. Initial conditions

To simulate cusp formation we must have an initial fie
configuration which will evolve into a cusp. This can b
done exactly, using a result of Vachaspatiet al. @18# that a
traveling wave along a straight string is an exact solution
the field theory equations of motion. In other words, an
bitrarily shaped wiggle that propagates at the speed of l
along a straight string will not radiate and will retain i
form.

These wiggles can be seen also in terms of functionsa8
and b8 in the Nambu-Goto approximation. For example,
straight part of the string in theẑ direction can be written in
terms ofa85 ẑ andb85 ẑ. Introducing a wiggle traveling in
one direction along the string will modify one of the fun
tionsa8 or b8 depending on the direction of the movement
the wiggle, keeping the other function fixed.

Using this method we can obtain the Nambu-Goto
scription for two wiggles traveling toward each other along
straight string. Then by using@18# we can write down the
expression for the fields in terms of the functionsa8 andb8
and the static straight string fields given by Eqs.~3! and~4!.
By calculating the values for the fields when the two wigg
are still separated by a portion of straight string we ens
that our initial conditions are exact, so we do not have to
a relaxation procedure as is necessary in other field the
simulation schemes@11–13#.

We design the two colliding wiggles such that they w
produce a cusp in the Nambu-Goto evolution and use th
as our initial conditions in the field theory code. One cou
imagine that the string would evolve into a different config
ration due to interaction before the time of the cusp, but
we will show later, that does not occur: the string core in
field theory simulation follows the path that the Nambu-Go
evolution predicts until immediately before the cusp.

As described earlier, the cusp is characterized in
Nambu-Goto approximation by the intersection ofa8 and
2b8 on the unit sphere. Far outside the area of interact
the string will be straight witha8 at the north pole of the uni
sphere, and2b8 at the south pole. Thus we are looking f
functionsa8 andb8 which make loops on the sphere, starti
and finishing at the poles and crossing at some point of
sphere.

Two closed loops cannot intersect in just a single po
unless it is a point of tangency, which does not give rise t
generic cusp. But we want to obtain information about
energy radiated by just one cusp, so we do not want to h
any interference in the dynamics due to the formation o
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second one.~A realistic cosmological string would have mu
tiple cusps, but they would be very well separated.! To pre-
vent this interference we will design the two wiggles so th
the first cusp will alter the string in such a way that t
second one will not occur. We will choose our parameters
that x0-• ẋ0.0, so we expecta8 to be broken and recon
nected, while the path ofb8 will not be greatly affected.
Thus we will arrange forb8 to crossa8 twice at the same
point, so that whena8 is reconnected to eliminate the firs
crossing, the second crossing will be eliminated as well.
will choose a simple path forb8 that starts at the pole, run
along a meridian, crossesa8 at the equator, and continues fo
short distance before turning around and returning along
same path.

We must also arrange that the magnitudes ofa09 and b09
are different to avoid a pathological situation which leads
extra energy emission, as discussed in@10#. We also want to
work in the canonical frame wherex0- is parallel toẋ0, so we
require thata0-1b0- is perpendicular toa09 and tob09 .

We will start by specifying our desired values fora09 and
a0- . As much as possible we would like other derivatives n
to contribute near the cusp, so we will set

aunnormalized8 ~s!5a081sa091
s2

2
a0- ~20!

and then

a8~s!5
aunnormalized8 ~s!

uaunnormalized8 ~s!u
. ~21!

We will use this form forsP@2s1 ,s1#, wheres1 is chosen
to be large enough that changes ina8 outside this range will
not have too much effect on the cusp dynamics.

Outside of this range, we just have to connecta8 to the
north pole of the unit sphere. We do this by choosing pa
of circles on the sphere which will smoothly interpolate b
tweena8(2s1) anda8(s1) and the pole.

The result of this design fora8 and2b8 is shown in Fig.
5.

To produce the initial field configuration, we offset th
wiggles produced bya8 andb8, so that one is at the top o
the lattice moving downward and other is at the bottom
the lattice moving upward. The actual shape of the string
be seen in Fig. 6.

When the two wiggles combine, we will look at the sha
of the string at the time of the cusp in the Nambu-Go
approximation, and define the ‘‘length scale’’ of the cusp f
the sake of discussion as

L5
1

ux09u
. ~22!

C. Recovering the energy and form of the string

In order to obtain the amount of energy released in
cusp evaporation, we implemented a method to recover,
of the field theory simulation, the total amount of energy l
in the string.
3-4
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FIELD THEORY SIMULATION OF ABELIAN-HIGGS . . . PHYSICAL REVIEW D60 023503
We first identify the plaquettes of the lattice that the stri
goes through, by looking for places where the phase of
complex scalar field on the four corners of the plaque
wraps around the origin in the complex plane. As long
two strings do not go through the same lattice cube,
technique always allows the string to be traced from one f
to the next. We take the path of the string to go through
centers of these plaquettes.~We have tried some algorithm
for improving the path of the string by closer examination
the field values at the corners of the plaquettes, but they
not produce significantly better results.!

This technique produces a discrete approximation to
string path, which we then smooth by a Gaussian convo
tion. The end result is a list of smoothed strings at differ
times, parametrized by an arbitrary parameterl. We will
denote these string positions byx(l,t).

Near the time and position of the cusp, the dynamics
not well described by the motion of a string, but rather
volve the complete field configuration. One can still recov

FIG. 5. Initial conditions for the functionsa8 and2b8, on the
unit sphere.

FIG. 6. The initial conditions. The surface shown is a surface
constant energy density surrounding the string core.
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a path of faces around which the field phase winds, but
different positions of this path at different times do not re
resent motion, but rather the unraveling of a field configu
tion. However, since we are only interested in the differen
between the energy in the string before and after the cusp
will just apply this method at times well before or well afte
the cusp where we are certain that the Nambu approxima
is a faithful description of the string.

To recover the energy of the string we first calcula
ẋ(l,t) by computing

ẋ~l,t !5
x~l,t !2x~l8,t2NDt !

NDt
, ~23!

where N is a number of lattice time steps over which w
average to reduce the effect of errors in recovering the st
position, andl8 is determined by the condition thatx(l,t)
2x(l8,t2NDt) be perpendicular todx(l,t)/dl.

Once we have calculated the velocity we can obtain
relation betweenl and the usual parameters by using Eq.
~6a!,

Udx~l,t !

dl U dl

ds
5A12uẋ~l,t !u2 ~24!

so

ds5
dl

A12 ẋ
~l,t !2Udx~l,t !

dl
U. ~25!

The total length of string is just the integral of the equati
above and so the energy is

Estring5mE ds. ~26!

Once we have obtained the vectorsx8 andẋ for the string,
we can get the functions,a8(s,t) andb8(s,t) from the re-
lations

a8~s,t !5x8~s,t !2 ẋ~s,t !, ~27a!

b8~s,t !5x8~s,t !1 ẋ~s,t !, ~27b!

and study the change of these functions due to the cusp
namics.

IV. RESULTS

We ran the simulation code for cusp scales@as defined by
Eq. ~22!# from L'5 up toL'34. For sizes up toL'17 we
usedDx50.25 or less, which gives a quite accurate simu
tion. For larger sizes we were forced by memory constra
to use larger values ofDx up to Dx50.425. These large
values produce somewhat decreased accuracy, especia
those parts of the string which are rapidly moving. They a
reduce the accuracy with which the position of the string a
thus the energy emission can be recovered from the sim
tion. However, we feel that these simulations are still su
f

3-5
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ciently accurate to draw some general conclusions abou
cusp evaporation process.

The code was written inLISP and executed on a Digita
Alpha processor. The largest lattices required about 700
of memory and one week of CPU time.

We first run the code letting only one wiggle evolve o
the straight string, settingb85 ẑ. This experiment confirms
Vachaspati’s result@18#, showing the traveling wave on th
string without any radiation. This is also a check for t
code, since it shows stability and energy conservation for
evolution with the boundary conditions specified above.

With the two colliding wiggles, the string forms a cusp
expected. Energy is conserved to within 1% until the rad
tion emitted at the cusp begins to be absorbed at the bo
ary. Figures 7 and 8 show the string shortly after the mom
at which the Nambu-Goto approximation predicts the cu
Except near the cusp, the Nambu-Goto evolution has b
followed accurately. But near the cusp, the core of the str
has collapsed away from the area where the cusp energ
stored and has released this energy in the form of radiat
This is what one would expect from the overlap model.
some point near the cusp the strings are close enough tha
fields can untangle, and the cusp beyond this point is
placed by a bridging string. After this time, the released
diation travels freely in an expanding shell as shown in F
9. Color figures and animation of the simulation are availa
in @19#.

For each simulation run, we recover the shape of
string, the form ofa8 and b8, and the total energy of the
string at each time step. Figure 10 shows a typical graph
the recovered points. There is significant variation in the
dividual points, both random variation due to the way
which the string core cuts through the lattice, and system
variation due to inaccuracies in recovering the energy
depend on the string shape. However, there is a clear di
ence between the string energy before and after the tim

FIG. 7. String evolution at the cusp forL'13. The core of the
string in the field theory simulation is shown light, and the Namb
Goto prediction dark. The ‘‘fog’’ shows areas of high energy de
sity. The string core has collapsed away from the point of the cu
leaving the energy behind in radiation.
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the cusp.~At times very near the cusp the energy cannot
recovered so there are no corresponding points on the p!

In Fig. 11 we plot the string length released by the cu
and compare with theoretical predictions. The error bars
Fig. 11 are a combination of the variation in the actual
covered energy with an estimate of the systematic errors
to the recovery process. As shown, the results are in ac
with the overlap model with overlap radiusr'1.15. Figure
12 shows this value ofr as compared to the shape of th
string profile. One would expect the overlap dynamics
begin at a radius where the fields have values intermed
between the core values and those at large distances, an
result seems quite reasonable in this regard.

The recovereda8 and 2b8 shortly after the cusp are
shown in Fig. 13. By comparison with Fig. 5, we can see t
the path of2b8 is roughly the same before and after th
cusp, but the path ofa8 has been greatly altered. Far from th
cusp it is the same, but in the region of interaction, it h

-
-
p,

FIG. 8. Close-up view of Fig. 7.

FIG. 9. Close-up view of the core of the string and the radiat
after the cusp evaporation. The cloud of radiated energy trave
an expanding shell.
3-6
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been reconnected around the other side of the sphere
the original crossing point. This reconnection, as plann
prevents the occurrence of a second cusp.

V. DISCUSSION

We have simulated a cosmic string cusp in Abelian-Hig
field theory on the lattice. Our results are in accord with
model that the evolution is accurately given by the Nam
Goto equations of motion until nearly the time of the cus
The effect of the cusp is to release an amount of ene
which is well approximated by the overlap model withr
'1.15.

As discussed in@10#, for a string of cosmological size
this model gives an energy emission of ordermArL , whereL
is the typical length scale. For a smooth string loop,L de-
pends on the size of the loop, which will be larger for loo
that were formed more recently in the evolution of the u

FIG. 10. Recovery of the total amount ofs on the string during
a cusp evaporation, forL'17. Points at left are before the cus
points at right are those after cusp evaporation. Near the time o
cusp,s cannot be recovered.

FIG. 11. Amount ofs released at the cusp as a function of t
length scaleL. The dashed line corresponds to the theoretical p
diction assumingr 51.15.
02350
m
d,

s
e
-
.
y

-

verse and that have not decayed to smaller sizes. If the
small-scale structure,L depends on the scale of the featur
that give rise to the cusp. The energy emission discus
here is smaller than previous estimates@5–9# by a factor of
(r /L)1/6 and would not lead to observable cosmic rays.

The effect of the evolution through the cusp is to disco
nect the path of eithera8 or 2b8 and reconnect it around th
other side of the unit sphere. We will suppose without loss
generality thatx0-• ẋ0.0 so that it isa8 that is reconnected
while 2b8 merely has a section deleted and forms a sm
kink. It is likely that the reconnecteda8 will have many
crossings with2b8 and thus might lead to many cusps in th
future. However, the total amount of string length in whi
a8 loops around the sphere is quite small, on the order or.
Thus the remaining feature involves a bending of the str
in about a string radius, and is thus more like a kink tha
region of string which would produce a cusp. Any cusps
which it is involved will have even smaller emission of r
diation than the original cusp.

he

-

FIG. 12. Functionsf ~solid curve! anda ~dashed curve! for the
static straight string. The vertical line indicates the best-fit va
from the field theory simulation,r'1.15.

FIG. 13. Recovered functionsa8 and 2b8 after the cusp, for
L'17.
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This result could perhaps be modified by gravitational
diation, which smooths out small-scale features@20#. Gravi-
tational back-reaction might smooth out the region wherea8
varies rapidly and restore it to its original crossing wit
2b8. This would produce another cusp at the same posi
in a subsequent oscillation. However, the region of over
contains much less energy than before, because most
has been emitted, so thata8 and2b8 cross that region in a
small amount ofs. Subsequent gravitational effects mig
increase this energy, but it will not grow as large as in
original cusp, and so will not lead to observable radiation
discussed above.
r
e,

y

02350
-

n
p
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A version of this paper with figures in color and anim
tion of the simulation is available in@19#.
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