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Field theory simulation of Abelian-Higgs cosmic string cusps
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We perform a lattice field theory simulation of cusps in Abelian-Higgs cosmic strings. The results are in
accord with the theory that the portion of the strings which overlaps near the cusp is released as radiation. The
radius of the string cores which must touch to produce the evaporation is approximatelin natural units.

In general, the modifications to the string shape due to the cusp may produce many cusps later in the evolution
of a string loop, but these later cusps will be much smaller in magnitude and more closely resemble kinks.
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PACS numbd(s): 98.80.Cq, 11.2%d

. INTRODUCTION X' (o, 0)| 2+ |X( o 1) 2=1, (6a)

Cosmic strings arise naturally in spontaneous symmetry X' (a,t)-X(a,t)=0. (6b)
breaking phase transitions in which the vacuum manifold
after the transition is not simply connectgd. (For reviews — The equation of motion is
see[2,3].) A simple field theory which possesses such de-
fects is the Abelian-Higgs model, X' (o, t) =X(ot), @

L£=D gDnd,_ EF JERY— §(|¢|2_ 7%)2 (1)  Wherex’ denotes differentiation with respect t® and X
K 4~ 4 denotes differentiation with respectttdEquation(6b) means
that the velocity of the string is always in the plane perpen-
dicular to the string, while Eq(6a parametrizes the string

DU with constant energy per unit. The general solution of Egs.
D,¢=(u~1eA) . @ (6)and(7) is

with

We can choose units such that1 ande=1. We will also 1
work in the “critical coupling” regime in which g x(o,t)==[a(c—t)+b(a+1)], (8)
=\/(2e?) =1 so that in our unita. =2. 2

The fields of an infinitely long, static, straight string are

given by[4] wherea andb are arbitrary functions that satisfg’|=|b’|
=1. The functionsa and b describe waves traveling in the
o(r)=e'f(r), €)) positive and negative directions, respectively.
As long as the string remains smooth, its entire evolution
a(r) is given by Eq.(8) and the state of the string at all times is
0T T Ty 4 fixed by the functiong’ andb’. The values of these func-

tions are unit vectors, so we can consider them to trace out
wheref(0)=a(0)=0 andf(r)—1 ande(r)—1 asr—c. paths_qn the_ surface c_)f the_unit sphere. For a string Ioop_, all
The exact form of and @ must be found numerically. quantities will be periodic ino, so the paths on the unit
If the string core radius is small as compared to the radiu§Phere will be closed. Furthermore, sireandb are them-
of curvature of a string, the action can be approximated byelves periodic,
the Nambu action,

f dO'a'(O'):de'b/(O'):O, (9
s=—Mf d?¢\/—dety, (5)

which is to say that the centers of gravity of the patha'of
whereu is the energy per unit string lengtly,is the metric  andb’ are at the center of the sphere. Thus, for exanwgle,
on the world sheet of the string add, /> denote the world or b’ could not lie entirely in a single hemisphere, and, in
sheet coordinates. We can choose parametensdt in such  general, we would expect that there would be one or more

a way that the position of the string is given at any tini®y  crossings between the pathsadfandb’. By the same argu-

a functionx(o,t) that satisfies ment, there will be places whee8 and —b’ have the same
value, that is to say values @f, and o, at whicha’' (o)
+b’'(0,)=0. As a result, at timeé=(o,— 0,)/2 and posi-

*Email address: kdo@alum.mit.edu tion o=(op+0,)/2 we wil find x'(o,t)=[b'(c+1)
"Email address: jose@cosmos2.phy.tufts.edu +a'(oc—1)]/2=0 and |x(o,t)|=|b'(c+t)—a’'(c—1)|/2
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\or R+ Tl
o=\ 3r

Xo-xol” Xl

1/2
+0(r). (10

We expect an amount of string of total lengtlr2to be
replaced by a short bridging string of length 2r less, so
that the energy released in radiation will be approximately
2uog.

In a string of cosmological sizer. would be very much
larger thanr, and the approximation in Eq10) would be
very accurate. However, we cannot simulate a string with
such a large ratio of length scalg®ur largest simulation

FIG. 1. Schematic shape for a cusp in a cosmic string. Thehaso/r~17) To improve the accuracy of our prediction,
shaded region corresponds to the core of the string. To the left ofve proceed as follows. We assume that the string has
the vertical line, the cores overlap, and the energy could be releasédambu-Goto evolution until the time of the cugphich is
as radiation. The string appears thinner near the cusp because ebnfirmed by simulation, see belpwand compute the posi-
Lorentz contraction. tions o, ando_ on the two sides of the cusp at which the

(Lorentz contractedstring cores just touch. It is possible that

=1. Such a point is a cusp. The string there is momentarily+ ando_ are not uniquely defined by this condition, since
moving (in the Nambu-Goto approximatipmt the speed of Perhapso.. could be moved away from the cusp whie
light. was moved toward the cusp, to produce different points of
As the String evolves toward the time of the cusp, theOVerIap. In this case, we take the pOintS which lead to the
Nambu-Goto approximation will break down. Since=0 at largest emission of energy. We then assume that the string
the cusp, the segments of string point in the same directiofegment fronr_ to o, will be replaced by a bridging string
leaving the cusp, and so there is the potential for overlajt rest betweer(o_) andx(os), to arrive at an estimate of
between the segments on the two sides. When the strin§e energy release. Since we do not know the radias
cores overlap, the topological constraints which stabilize th&vhich overlap dynamics become possible, we can consider
String no |0nger operate, and the energy in the String can b@e simulation to provide us with a value for this radius.
released as radiation. This radiation is of cosmological inter- How should the paths o&' and b’ be affected by the
est because it could potentially lead to observable cosmigvaporation of the cusp? Near the cusp(c)~ay=—Xg
rays, and because it affects the rate at which oscillating loopandb’ (o) ~b{=Xxo. Outside the region of overlap, they will
lose their energy5—10|. retain these values, but inside that region we will have a
At some point when the cusp-related evolution is com-bridging string. The bridging string will point in the direction
plete, the string will once again be smooth and nonoverlapef xj' because that is the direction in which the two arms of
ping, and will resume Nambu-Goto evolution with new func- the cusp spread apart. Since the motion of the string near the

tionsa’ andb’. One can consider the evolution at the time of cusp is approximately,, which is parallel taky , the bridg-

the cusp to be a scattering process which takes an initial stafg string will be created approximately stationary. Thus on
of a’ andb _and produces a fmal state Wlth nak andb the bridge,a’ (o) =b’(o)xxg , with a positive constant of
and a certain amount of outgoing radiation. proportionality. There are thus two cases, depending on

To determine the amount of radiation emitted and the reynetherx” is parallel or antiparallel ta,. If they are paral-

sulting configuration of the string, we have written a lattice|g| then b’(o) on the bridge will have roughly the same
field theory simulation of the Abelian-Higgs field theory. '

Il. THEORETICAL EXPECTATIONS

The usual expectation is that the string can participate in
cusp evaporation when the “cores” of the strings on the two
sides of the cusp are overlapping. A parametgives the
“core radius,” i.e., the point at which overlap dynamics can
begin, as shown in Fig. 1. We expect this radius to be on the
order of ~1=1 in our units.

In [10] we showed that a generic cusp can be analyzed in
a frame in whichx{ is parallel tox,, where the subscript 0
denotes quantities evaluated at the cusp. Throughout this pa-
per we will work in such a reference frame.

In Sec. Ill of [10] we calculated the amount of overlap
between the two branches of a string at a cusp. The result FIG. 2. Schematic of the evolution of the functioas (solid
was that the two segments of the string overlap from the cusprrows andb’ (dashed arrowsbefore(dashed lingand after(solid
out to a distancer; given by line) the cusp evaporation process.
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value that it has on nearby unaffected portions of the string
buta’ (o) on the bridge will have nearly the opposite value
as it does nearby, as shown in Fig. 2. Thus in this case w
expect the path of’'(o) to be broken near the point of

crossing and reconnected around the opposite side of the unit

sphere. In the case thaf andx, are antiparallel, we will
have the reverse behavior. The pathadtfo) will be pretty
much unaffected, whild’ (o) will be broken and recon-

nected. This effect of the cusp on the evolution of the func-

tionsa’ andb’ on the unit sphere is shown in Figs. 3 and 4.

Il. SIMULATION
A. Lattice action

To put Eg.(1) on a lattice, we have used an approach
somewhat different from those that have been used in th
past for topological defecfd1-13, but more like that used
in lattice QCD[14]. We put the system on a lattice in both
space and time, with the scalar fiefdstored on the vertices
of the lattice, the vector field, on the links, and the field
strengthF,, on the faces. The action can be specified a
follows.

Let sdenote a lattice sitd,a directed link from sité_ to
sitel, , andf a directed face made of linky, f,, f;, and
f,. Let =5 denote summation over all site¥; summation
over all links, counting each link once, ar®} summation

over all faces, counting each face once. Dt —s denote
summation over all links that end in s'ﬂmndiml:, denote

summation over all faces that border lihkThen the lattice
action is

S=Ax3At| D, cs+2 c|+2 Lil, (11)
where
1
Ls==V(dg)== M| bd? = 7)?, (12)
£|:9|D|ED|¢, (13
1 2
Li=— ngFf . (14

HereAx andAt are the spatial and temporal lattice spacing;
g, is the metric,g,=+1 if | is timelike, andg,=—1 if | is
spacelike; ancgf:gflgfz, i.e., g;=+1 if all sides off are
spacelike, andj;=—1 if f has a timelike side. The discrete
covariant derivative is given by

Dip=A (¢ —e™®Mg ), (153

Dig=A\(¢, —e 21*Ag ), (15b)

whereA, denotesAx if | is spacelike oAt if | is timelike.
The field strength is given by
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FIG. 3. The paths o&’ and —b’ before the cusp. The dashed
segments are the parts that will be affected by the cusp. The dotted
gurves are the paths around the back of the sphere.

_A—1p-1
(16)

The action of Eq.(11) is invariant under a discrete gauge

Yransformation given by a real numhé&g at each lattice site,

(173
(170

d’s—’eiAS(/’s
A= AFATH A=A,

We will work in temporal gaugef\, =0 for all timelike links
I, which greatly simplifies the calculation.
The equations of motion resulting from Ed.1) are

— . — oV
D gA (¢ e A g+ —=0, (189
Il =s dbs
WE_l ArtgiFi=ii, (18b)
=
where the link current is
ji=ieA tgi (e g —e*MNG ¢ ). (19)

The stability of our finite difference scheme requires the
Courant conditionAt/Ax< 1/,/3~0.58[15] for three spatial
dimensions. In fact, ratios slightly less than this are still un-

FIG. 4. The paths c&' and—b’ after the cusp. One of the paths
has been broken and reconnected around the back of the sphere.
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stable in our code, presumably due to numerical error. To beecond ongA realistic cosmological string would have mul-
safe, we have usellt/Ax=0.5. To verify that this condition tiple cusps, but they would be very well separatdch pre-
is sufficient, we have checked that our simulations conserveent this interference we will design the two wiggles so that
energy over long periods of time. the first cusp will alter the string in such a way that the
We have used reflecting boundary conditigfised field  second one will not occur. We will choose our parameters so
values on the top and the bottom faces of our lattice box,that xj -X,>0, so we expect’ to be broken and recon-
and first order absorbing boundary conditi¢n§,17] on the  nected, while the path o’ will not be greatly affected.
lateral faces. The absorbing conditions prevent the radiatioMhus we will arrange fob’ to crossa’ twice at the same
emitted at the cusp from reflecting off the walls and interactpoint, so that whera’ is reconnected to eliminate the first
ing with the later evolution of the string. crossing, the second crossing will be eliminated as well. We
will choose a simple path fdo’ that starts at the pole, runs
along a meridian, crosses at the equator, and continues for
short distance before turning around and returning along the
To simulate cusp formation we must have an initial fieldsame path.
configuration which will evolve into a cusp. This can be We must also arrange that the magnitudespfind by
done exactly, using a result of Vachaspattial. [18] that a  are different to avoid a pathological situation which leads to
traveling wave along a straight string is an exact solution okextra energy emission, as discusseflli]. We also want to
the field theory equations of motion. In other words, an arwork in the canonical frame Whep%’ is parallel to)'(o, so we
bitrarily shaped wiggle that propagates at the speed of lightequire thatay + by is perpendicular t@j; and toby.
along a straight string will not radiate and will retain its  \ye will start by specifying our desired values faj and

form. . . _ ay . As much as possible we would like other derivatives not
These wiggles can be seen also in terms of functeins

andb’ in the Nambu-Goto approximation. For example, at0 contribute near the cusp, so we will set

straight part of the string in the direction can be written in o?

terms ofa’ =z andb’ =Z. Introducing a wiggle traveling in Annormalize 0) = 89+ orag+ > o (20
one direction along the string will modify one of the func-

tionsa’ orb’ depending on the direction of the movement of and then

the wiggle, keeping the other function fixed.

Using this method we can obtain the Nambu-Goto de- ) & nnormalize§ )
scription for two wiggles traveling toward each other along a a'(o)= m
straight string. Then by usinpl8] we can write down the Bunnormalize
expression for the fields in terms of the functicaaisandb’ We will use this form foro e[ — 01,0 ], wherea; is chosen
and the static straight string fields given by E(®.and(4).  to be large enough that changesainoutside this range will
By calculating the values for the fields when the two wigglesnot have too much effect on the cusp dynamics.
are still separated by a portion of straight string we ensure Qutside of this range, we just have to connattto the
that our initial conditions are exact, so we do not have to usgorth pole of the unit sphere. We do this by choosing paths
a relaxation procedure as is necessary in other field theoryf circles on the sphere which will smoothly interpolate be-
simulation schemefl1-13. tweena’ (— o) anda’ (o) and the pole.

We design the two colliding wiggles such that they will  The result of this design fa’ and—b’ is shown in Fig.
produce a cusp in the Nambu-Goto evolution and use therg,
as our initial conditions in the field theory code. One could To produce the initial field Configuration, we offset the
imagine that the string would evolve into a different configu-wiggles produced by’ andb’, so that one is at the top of
ration due to interaction before the time of the cusp, but aghe |attice moving downward and other is at the bottom of
we will show later, that does not occur: the string core in thethe lattice moving upward. The actual shape of the string can
field theory simulation follows the path that the Nambu-Gotope seen in Fig. 6.
evolution predicts until immediately before the cusp. When the two wiggles combine, we will look at the shape

As described earlier, the cusp is characterized in thef the string at the time of the cusp in the Nambu-Goto

Nambu-Goto approximation by the intersectionasfand  approximation, and define the “length scale” of the cusp for
—b’ on the unit sphere. Far outside the area of interactionthe sake of discussion as

the string will be straight witla' at the north pole of the unit

sphere, and-b’ at the south pole. Thus we are looking for 1
functionsa’ andb’ which make loops on the sphere, starting
and finishing at the poles and crossing at some point of the
sphere.

Two closed loops cannot intersect in just a single point,
unless it is a point of tangency, which does not give rise to a In order to obtain the amount of energy released in the
generic cusp. But we want to obtain information about thecusp evaporation, we implemented a method to recover, out
energy radiated by just one cusp, so we do not want to havef the field theory simulation, the total amount of energy left
any interference in the dynamics due to the formation of &n the string.

B. Initial conditions

21

= T (22)
g

C. Recovering the energy and form of the string
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a path of faces around which the field phase winds, but the
different positions of this path at different times do not rep-
resent motion, but rather the unraveling of a field configura-
tion. However, since we are only interested in the difference
between the energy in the string before and after the cusp, we
will just apply this method at times well before or well after
the cusp where we are certain that the Nambu approximation
is a faithful description of the string.

To recover the energy of the string we first calculate
x(\,t) by computing

X(N,t) —x(\,t—NAt)
NAt '

X(\,t)= (23

where N is a number of lattice time steps over which we
average to reduce the effect of errors in recovering the string
position, and\’ is determined by the condition tha{\,t)
—X(\',t—NAt) be perpendicular tax(\,t)/dX\.

Once we have calculated the velocity we can obtain the
relation betweer\ and the usual parameter by using Eq.

We first identify the plaquettes of the lattice that the string(6),
goes through, by looking for places where the phase of the
complex scalar field on the four corners of the plaquette
wraps around the origin in the complex plane. As long as
two strings do not go through the same lattice cube, this
technique always allows the string to be traced from one fac&0
to the next. We take the path of the string to go through the
centers of these plaquetté¥Ve have tried some algorithms do— dx
for improving the path of the string by closer examination of 7= \/ﬁ
the field values at the corners of the plaquettes, but they did
not produce significantly better results. o The total length of string is just the integral of the equation

This technique produces a discrete approximation to th@pove and so the energy is
string path, which we then smooth by a Gaussian convolu-
tion. The end result is a list of smoothed strings at different
times, parametrized by an arbitrary parameterWe will Estring= 1 f do. (26)
denote these string positions kg ,t).

Near the time and position of the cusp, the dynamics are  Once we have obtained the vectafsandx for the string,
not well described by the motion of a string, but rather in-we can get the functions/’ (o,t) andb’(o,t) from the re-
volve the complete field configuration. One can still recovenations

4% a'(o,t)=x'(o,t)=x(a,1), (273

b’ (o,t)=x'(o,t) +Xx(a,t), (27b)
and study the change of these functions due to the cusp dy-
b namics.

FIG. 5. Initial conditions for the functiona’ and —b’, on the
unit sphere.

dx(\ )] A\

i ldo V1=[x(\, )] (24

(N2

(29

dx(\,t)
dA

IV. RESULTS

We ran the simulation code for cusp scdlas defined by

a ‘ Eq. (22)] from L~5 up toL~34. For sizes up th~17 we

usedAx=0.25 or less, which gives a quite accurate simula-
tion. For larger sizes we were forced by memory constraints
to use larger values ahx up to Ax=0.425. These larger

R7 values produce somewhat decreased accuracy, especially in

those parts of the string which are rapidly moving. They also
reduce the accuracy with which the position of the string and

FIG. 6. The initial conditions. The surface shown is a surface ofthus the energy emission can be recovered from the simula-
constant energy density surrounding the string core. tion. However, we feel that these simulations are still suffi-
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Step 240 Step 240
FIG. 7. String evolution at the cusp far~13. The core of the FIG. 8. Close-up view of Fig. 7.

string in the field theory simulation is shown light, and the Nambu-

Goto prediction dark. The “fog” shows areas of high energy den- .

sity. The string core has collapsed away from the point of the cuspt,he cusp(At times very near the cusp .the en_ergy cannot be

leaving the energy behind in radiation. recove_red so there are no qorrespondmg points on the plot.
In Fig. 11 we plot the string length released by the cusp

and compare with theoretical predictions. The error bars in

ciently accurate to draw som neral conclusions about the L P
ently accurate 1o d some general conclusions abou hﬁg. 11 are a combination of the variation in the actual re-
cusp evaporation process.

The code was written inisp and executed on a Digital covered energy with an estimate of the systematic errors due

Alpha processor. The largest lattices required about 700 Méo. the recovery process. As shown, the 'results are n accord
! with the overlap model with overlap radius=1.15. Figure
of memory and one week of CPU time.

We first run the code letting only one wiggle evolve on L2 shows this value of as compared to the shape of the
the straight string, setting’ =Zz. This experiment confirms string profile. One would expect the overlap dynamics to

Vachaspati's resulf18], showing the traveling wave on the begin at a radius where the fields have values intermediate
. P P g the 9 between the core values and those at large distances, and the
string without any radiation. This is also a check for the

code, since it shows stability and energy conservation for théeSUIt seems quite reasonable in this regard.
' Y gy The recovereda’ and —b’ shortly after the cusp are

evolution with the boundary conditions specified above. shown in Fig. 13. By comparison with Fig. 5, we can see that

With the two colliding wiggles, the string forms a cusp as >
expected. Energy is conserved to within 1% until the radia—the path of—b’ is roughly the same before and after the

tion emitted at the cusp begins to be absorbed at the boung-=P: _bqt the path af has_been gfe"".t'y alte'red. Fa_r from the
ary. Figures 7 and 8 show the string shortly after the moment">P itis the same, but in the region of interaction, it has
at which the Nambu-Goto approximation predicts the cusp.

Except near the cusp, the Nambu-Goto evolution has been A N

followed accurately. But near the cusp, the core of the string \\
has collapsed away from the area where the cusp energy is \
stored and has released this energy in the form of radiation. L

This is what one would expect from the overlap model. At \ N
some point near the cusp the strings are close enough that the A
fields can untangle, and the cusp beyond this point is re- s
placed by a bridging string. After this time, the released ra- \\
diation travels freely in an expanding shell as shown in Fig. \ \
9. Color figures and animation of the simulation are available \
in [19]. \

For each simulation run, we recover the shape of the /

string, the form ofa’ andb’, and the total energy of the

string at each time step. Figure 10 shows a typical graph of /

the recovered points. There is significant variation in the in- y, /

dividual points, both random variation due to the way in // Step 280

which the string core cuts through the lattice, and systematic ]

variation due to inaccuracies in recovering the energy that FIG. 9. Close-up view of the core of the string and the radiation
depend on the string shape. However, there is a clear diffekfter the cusp evaporation. The cloud of radiated energy travels in
ence between the string energy before and after the time e expanding shell.
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FIG. 10. Recovery of the total amount efon the string during
a cusp evaporation, fdr~17. Points at left are before the cusp;
points at right are those after cusp evaporation. Near the time of th
cusp,o cannot be recovered.

FIG. 12. Functiond (solid curve and « (dashed curvefor the
static straight string. The vertical line indicates the best-fit value
ﬁom the field theory simulatiorr,~1.15.

) verse and that have not decayed to smaller sizes. If there is
been reconnected around the other side of the sphere froginall-scale structurd, depends on the scale of the features
the original crossing point. This reconnection, as plannedyt give rise to the cusp. The energy emission discussed

prevents the occurrence of a second cusp. here is smaller than previous estimafbs-9] by a factor of
(r/L)*6 and would not lead to observable cosmic rays.
V. DISCUSSION The effect of the evolution through the cusp is to discon-

nect the path of eithea’ or —b’ and reconnect it around the

We have simulated a cosmic string cusp in Abelian-Higgsother side of the unit sphere. We will suppose without loss of
field theory on the lattice. Our results are in accord with thegenerality thaixj - x,>0 so that it isa’ that is reconnected,
model that the evolution is accurately given by the Nambuyyhile —b’ merely has a section deleted and forms a small
Goto equations of motion until nearly the time of the cusp.kink. It is likely that the reconnected’ will have many
The effect of the cusp is to release an amount of energyrossings with-b’ and thus might lead to many cusps in the
which is well approximated by the overlap model with  fytyre. However, the total amount of string length in which
~115. _ _ & loops around the sphere is quite small, on the order of

As discussed ir{10], for a string of cosmological size, Thuys the remaining feature involves a bending of the string
this model gives an energy emission of orgefrL, whereL  in about a string radius, and is thus more like a kink than a
is the typical length scale. For a smooth string lobpde-  region of string which would produce a cusp. Any cusps in

pends on the size of the loop, which will be larger for loopswhich it is involved will have even smaller emission of ra-
that were formed more recently in the evolution of the uni-diation than the original cusp.

45 1 T T T 1 1 T

35 - .

25 -

20 |
15 b .
wofp ¥ 1

.
5 .
,

0 1 1 1 1 1 1 1

0 5 10 15 20 25 30 35 40

FIG. 11. Amount ofo released at the cusp as a function of the
length scald_. The dashed line corresponds to the theoretical pre- FIG. 13. Recovered functions’ and —b’ after the cusp, for
diction assuming =1.15. L~17.
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This result could perhaps be modified by gravitational ra- A version of this paper with figures in color and anima-
diation, which smooths out small-scale featur28]. Gravi-  tion of the simulation is available ifL9].
tational back-reaction might smooth out the region where
varies rapidly and restore it to its original crossing with
—Db’. This would produce another cusp at the same position ACKNOWLEDGMENTS
in a subsequent oscillation. However, the region of overlap
contains much less energy than before, because most of it We would like to thank Alex Vilenkin for suggesting the
has been emitted, so that and —b’ cross that region in a problem, Inyong Cho for providing us with a static string
small amount ofo. Subsequent gravitational effects might profile, and Xavier Siemens and Alex Vilenkin for helpful
increase this energy, but it will not grow as large as in theconversations. This work was supported in part by funding
original cusp, and so will not lead to observable radiation, aprovided by the National Science Foundation. J. J. B. P. is
discussed above. supported in part by the Fundani®edro Barrie de la Maza.
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